

MEREDUKSI RANDOM VALUED IMPULSE NOISE DENGAN MENGKOMBINASKAN ADAPTIVE CENTER WEIGHTED MEDIAN FILTER DAN DETAIL-PRESERVING VARIATIONAL METHOD PADA CITRA

Roky Rukanda¹, Fazmah Arief Yulianto², Tjokorda Agung Budi Wirayuda³

¹Teknik Informatika, Fakultas Teknik Informatika, Universitas Telkom

Abstrak

Suatu citra sering mengalami kerusakan, kerusakan pada gambar dinamakan dengan noise. Salasatu jenis noise yang ada yaitu Random Valued Impulse Noise (RVIN), biasanya impulse noise muncul karena adanya kondisi lingkungan yang mengganggu proses pengambilan citra tersebut seperti adanya debu, sehingga gambar yang seharusnya bagus kelihatan tidak bagus. Sehingga dibutuhkan suatu penyaringan /pemfilteran noise dalam pemrosesan suatu citra digital. Dalam beberapa tahun terakhir telah banyak dikembangkan teknik pengurangan (mereduksi) noise pada suatu citra.

Suatu citra sering mengalami kerusakan, kerusakan pada gambar dinamakan dengan noise. Salasatu jenis noise yang ada yaitu Random Valued Impulse Noise (RVIN), biasanya impulse noise muncul karena adanya kondisi lingkungan yang mengganggu proses pengambilan citra tersebut seperti adanya debu, sehingga gambar yang seharusnya bagus kelihatan tidak bagus. Sehingga dibutuhkan suatu penyaringan /pemfilteran noise dalam pemrosesan suatu citra digital. Dalam beberapa tahun terakhir telah banyak dikembangkan teknik pengurangan (mereduksi) noise pada suatu citra.

Berdasarkan analisis terhadap pengukuran secara objektif yang menunjukan kinerja dari ACWMF sebagai pendeteksi noise dan ACWMF dikombinasikan dengan DPVM mampu menghasilkan PSNR yang baik dan hasil korelasi yang baik. ACWMF mampu mendeteksi dengan baik dari berbagai karakteristik gambar dan tingkat kerusakan gambar dengan melibatkan nilai threshold.

Kata Kunci: Random Valued Impulse Noise (RVIN), Adaptive Center-Weighted Filter, Detail Preserving Variational Method, Median Filter, PSNR, akurasi, korelasi.Median,

Abstract

Sometimes an image experienced damage which is called noise. One kind of noise is Random Valued Impulse Noise (RVIN). The impulse noise may occur becaused the surrounding distracts the image capturing process. one of that example is dust. It makes image that should be seen good become poor in quality. So that is urgently needs the noise filtering on digital image processing. In the recent years, there are many techniques have developed in order to reduce noise on image.

The system which is going to develop is aimed to implement testing on the combination between Adaptive center-Weighted Median Filter method and Detail Preserving Variational Method. The system implemented windows matrix 3 x 3 to practicing whole processes, detecting and filtering. First of all insert an image which is processed and tested. Next, reads the image file as pixel matrix. Then inserts the wished noise probability to be tested and insert it into the image so that PSNR value may occur from the noised image. then takes the matrix of the noised image. Detects the damage pixel caused by RVIN using ACWMF. The output of ACWMF is the map of binary matrix meanwhile the rate of detection accuracy occurs. Next step, according to the binary matrix map which is followed by filtering process using median filter combined with DVPM on choosing the median filter result. Then the system will display the image of filtering result and image's PSNR result of filtering process. The filtering image result will be detected on its edge by edge detection method and the real image is also processed with edge detection in order to understanding the relation between the two edge of those images.

According to the analysis on the objective measuring indicates the performance of ACWMF as noise detector and the combination between ACWMF and DPVM are able to produce fine PSNR and correlation result. ACWMF is able to detect any kind of images characteristic and the damage rate which involves threshold value.

Keywords: Random Valued Impulse Noise (RVIN), Adaptive Center-Weighted Median FiDetail Preserving Variational Method, Median Filter, PSNR, accuration, corelation.lter,

BAB I PENDAHULUAN

1.1 Latar Belakang Masalah

Citra merupakan gambar pada bidang dua dimensi, Citra ditinjau dari sudut pandang matematis adalah fungsi yang kontinyu dari intensitas cahaya pada bidang dua dimensi, dimana ketika sumber cahaya yang menerangi objek kemudian dipantulkan kembali dan di tangkap oleh alat-alat optik. seperti kamera digital, kamera ponsel dan lain-lain, sehingga kemungkinan besar gambar nya kurang bagus.

Sala satu contoh yang terjadi pada dunia nyata adalah pada saat suatu sensor pada kamera digital kotor atau terdapat debu, sehingga pada saat pengambilan gambar, hasil gambarnya kurang bagus atau terlihat ada bintik-bintik. Hal ini terjadi karena pada saat pengambilan gambar, sensor dari alat optik tidak dapat menangkap dengan sempurna. Bintik-bintik yang terdapat pada gambar merupakan debu atau kotoran yang tertangkap oleh sensor alat optik yang mempunyai tingkat intensitas warna yang berbeda-beda atau tidak tetap. Setiap kerusakan pada citra digital dinamakan dengan *nosie*, jenis noise yang mempunyai intensitas warna yang tidak tetap dinamakan dengan *Random Valued Impulse Noise(RVIN)*. Maka diperlukanlah suatu metode dalam mengurangi (mereduksi) agar dapat memproses suatu citra, dimana data dari citra tersebut diolah atau diproses sehingga nantinya didapatkan gambar yang lebih bagus, yang disebut dengan Image Processing (pengolahan citra).

Salasatu metode yang digunakan untuk mereduksi (mengurangi) noise adalah dengan Adaptive Center-Weigthed Median Filter (ACWMF). Metode ini digunakan untuk melakukan proses pendeteksian sebuah noise, dimana dalam proses pendeteksian nya dengan memberikan bobot pada titik tengah atau pixel yang diproses dengan tujuan agar nilai yang akan diproses tepat nilainya, setelah didapatakan kandidat noisenya kemudian dilakukanlah proses pergantian pixel (filtering) dengan menggunakan median filter. Jadi Metode ACWMF digunakan untuk melakukan pendeteksian terhadap noise sekaligus malakukan proses filtering.

Baru-baru ini terdapat suatu metode yang dinamakan dengan *Detail-Preserving Variational Method (DPVM)* dimana metode ini penggabungan antara *smooth data fitting* dengan *edge-preserving*, metode digunakan untuk menyeleksi hasil filter dengan mempertimbangkan hasil pergantian *pixel* yang bagus sehingga kualitas gambar yang dihasilkan lebih bagus dan juga dengan mempertimbangkan suatu tepi atau sisi dari suatu gambar. Sehingga menghasilkan gambar yang bagus berdasarkan dari nilai pixel yang digantikan lebih bagus dan sisi yang dapat di pertahankan lebih banyak. maka dari itu dalam proses *filtering* pada *ACWMF* dikombinasikan dengan metode *DPVM* yang diharapkan dapat menghasilkan gambar yang bagus.

University

1.2 Batasan Masalah

Pada tugas akhir ini akan mengkombinasikan dua metode yang digunakan dalam mereduksi atau memperbaiki noise pada suatu citra yaitu dengan Metode *Adaptive Center-Weighted Median Filter Dan Detail-Preserving Variational Method*, sebagai kerangka penelitian, maka dirumuskan berbagai masalah diantaranya.

- 1. Bagaimana mengimplementasiakan Adaptive Center-Weighted Median Filter Dan Detail-Preserving Variational Method dalam mengurangi atau mereduksi Impulse noise pada suatu citra?
- 2. Bagaimana kualitas yang dihasilkan dari pengkombinasian metode Adaptive Center-Weighted Median Filter Dan Detail-Preserving Variational Method untuk mendapatkan hasil citra yang diinginkan berdasarkan nilai Peak Signal to Noise Ratio(PSNR), dan nilai korelasi?

Pada penelitian tugas akhir ini akan dibatasi oleh:

- 1. Ukuran Citra Asli dalam format Bitmap berukuran 256 x 256 pixel.
- 2. Jenis noise yang ditambahkan ke citra adalah Random Valued Impulse Noise (RVIN).
- 3. Jenis Citra Asli yang digunakan adalah gray scale.

Adapun praduga awal atau hipotesa pada tugas akhir ini adalah nilai threshold yang didapat sangat berpengaruh dalam mendeteksi *noise* dimana pengaruh tersebut yaitu semakin kecil nilai threshold maka *pixel* yang terdeteksi sebagai *noise* semakin banyak, sebaliknya jika nilai threshold semakin besar maka *noise* yang terdeteksi semakin sedikit.

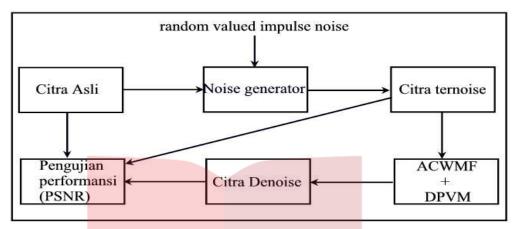
1.3 Tujuan

Tujuan yang ingin dicapai dalam tugas akhir ini adalah:

- 1. Mengimplementasikan metode dalam mengurangi (mereduksi) Impulse Noise dengan mengkombinasikan Metode Adaptive Center-Weighted Median Filter Dan Detail-Preserving Variational Method.
- 2. Menganalisa kualitas citra yang dihasilkan dari kombinasi dua metode dalam mengurangi (*mereduksi*) *noise* berdasarkan factor s, α, β dalam proses mendapatkan hasil citra yang bagus dengan melibatkan parameter uji *PSNR* untuk mengukur kualitas dari suatu gambar dan juga parameter uji korelasi untuk mengetahui hubungan antara gambar sisi asli dengan gambar sisi hasil filter.

1.4 Metodologi Penyelesaian Masalah

Metodologi penyelesaian masalah yang akan digunakan adalah:


1. Study literatur

Dalam tahapan ini bertujuan untuk mengumpulkan bahan-bahan atau informasi dari tugas akhir sebelum nya yang berkaitan dengan topik tugas akhir ini dan mendapatkan deskripsi yang jelas dasar teori yang kuat tentang *Metode Adaptive Center-Weighted Median Filter Dan Detail-Preserving Variational Method*. Referensi tentang Matlab yang akan digunakan sebagai software untuk mengimplementasikan kedua metode tersebut.

2. Analisa dan desain

Tahap ini meliputi analisis untuk merancang implementasi image citra dengan *Metode Adaptive Center-Weighted Median Filter Dan Detail-Preserving Variational Method.* Desain perancangan akan dibentuk dalam *Diagram blok dan Flowchart.* Skema umum

Gambar 1.1 Skema Umum Sistem

3. Implementasi sistem

Tahap ini meliputi pembangunan perangkat lunak yang telah dirancang sebalumya. Pada tahapan ini akan diimplementasikan perancangan yang telah dilakukan menjadi perangkat lunak dengan menggunakan software program Matlab 7.

4. Testing dan Analisis Hasil

Pada tahap ini akan dilakukan pengujian terhadap perangkat lunak yang dibuat dan sekaligus melakukan analisis terhadap hasil perangkat lunak yang dibuat. Parameter yang akan di analisis adalah parameter s yang merupakan konstanta dalam proses pendeteksian, dan parameter α , β yang merupakan konstanta dalam proses pemilihan gambar berdasarkan sisi dari suatu gambar. Output dari perangkat lunak akan dianalisis hasil dari image enhancement. Pengujian dilakukan dengan pengukuran PSNR dan korelasi.

Metode penelitian yang digunakan dalam menentukan nilai-nilai dari parameter s dan α , β yang akan di uji adalah coba-coba dangan memasukan nilai terhadap setiap parameter.

5. Penyusunan laporan

1.5 Sistematika Penulisan

Tugas Akhir ini terdiri beberapa bagian yaitu:

BAB I PENDAHULUAN

Berisi latar belakang, perumusan masalah, batasan masalah, tujuan pembahasan, metodologi penyelesaian masalah dan sistematika penulisan.

BAB II LANDASAN TEORI

Berisi penjelasan singkat mengenai konsep-konsep yang mendukung dikembangkannya sistem ini. Konsep yang digunakan untuk mendukung sistem ini adalah *Metode Adaptive Center-Weighted Median Filter Dan Detail-Preserving Variational Method.*

BAB III DESAIN DAN IMPLEMENTASI

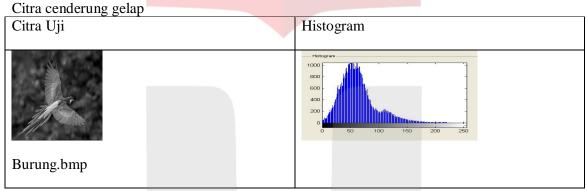
Berisi rincian mengenai desain sistem serta implementasi sistem yang dibuat.

BAB IV PENGUJIAN DAN ANALISA SISTEM

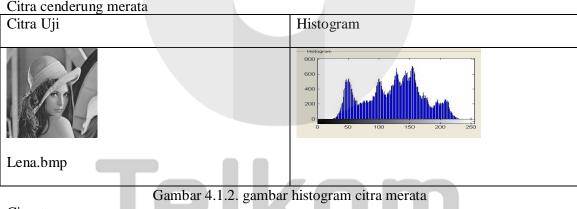
Berisi rincian mengenai pengujian yang dilakukan terhadap sistem yang dikembangkan, disertai analisis terhadap hasil pengujian.

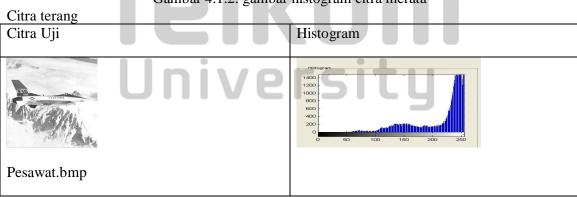
BAB V KESIMPULAN DAN SARAN

Berisi kesimpulan yang diambil berkaitan dengan system yang dikembangkan, serta saran-saran untuk pengembangan lebih lanjut.



BAB IV PENGUJIAN DAN ANALISIS SISTEM


Pada Bab IV ini akan dibahas mengenai pengujian sistem yang kemudian dianalisis hasil pengujian tersebut. Pengujian sistem dilakukan dengan mensimulasikan aplikasi ACWMF dan DPVM yang merupakan kombinasi dari algoritma Adaptive Center Weighted Median Filter sebagai pendeteksi noise dan median filter sebagai proses filtering-nya yang dikombinasikan dengan DPVM. Pengujian dilakukan dengan memasukan beberapa citra uji.


4.1. Analisa Pengujian Secara Objektif

Pada tugas akhir ini akan dilakukan Proses pengujian dengan 3 citra uji yang berdasarkan *karakteristik* tingkat kecerahan gambar dengan format bitmap berukuran 256X256. Berikut ini merupakan citra-citra uji berdasarkan tingkat *kecerahan/karakteristik* gambar.

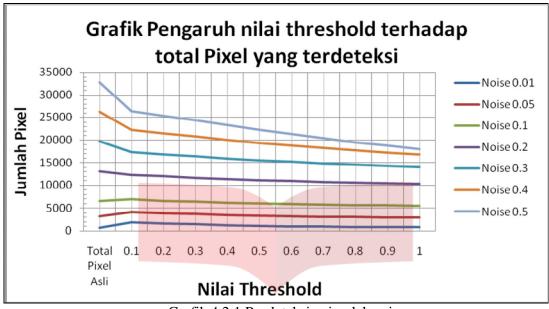
Gambar 4.1.1. gambar histogram citra gelap

Gambar 4.1.3. gambar histogram citra terang

4.2. Analisa Pengaruh Nilai Threshold Terhadap Proses Pendeteksian ACWMF

Dalam percobaan pertama, akan dilakukan pengujian terhadap pendeteksian *ACWMF* dimana dalam pengujian ini akan melakukan pengujian berdasarkan tingkat kerusakan gambar, ada 7 tingkat kerusakan yang dibangkitkan oleh generate noise dengan jenis noise RVIN(Random Valued Impulse Noise) yaitu 1% (0.01), 5%(0.05), 10%(0.1), 20%(0.2), 30%(0.3), 40%(0.4), 50%(0.5), dan juga factor s yang dijadikan parameter yang mempengaruhi ke 4 nilai threshold yaitu 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. Dengan ke 4 nilai threshold (thr1, thr2, thr3, thr4) berturut adalah 40, 25, 10, 5. dimana masing-masing nilai threshold dijumlahkan dengan *standar deviasi* dengan *faktor s* sebagai parameter untuk merubah *standar deviasi*, hal ini diharapkan agar dapat menjangkau nilai dari *sign-difference* dalam proses pendeteksian.

Berikut tabel hasil percobaan dengan faktor s yang bervariasi untuk mempengaruhi nilai threshold yang didasarkan pada jumlah pixel:


TD 1 1 4 0 1	D 1 1 1		
Tabel 4.2.1	Pendeteksiai	ı jumlah noise	е

	Noise						
Faktor s	0.01	0.05	0.1	0.2	0.3	0.4	0.5
Total Noise Asli	655	3277	6554	13107	19661	26214	32768
0.1	1956	4191	6915	12331	17340	22230	26373
0.2	1673	3915	6606	11970	16789	21497	25357
0.3	1441	3690	6366	11628	16333	20760	24342
0.4	1272	3514	6171	11346	15873	20041	23333
0.5	1111	3334	5995	11053	15438	19341	22205
0.6	1025	3238	5895	10874	15144	18816	21318
0.7	939	3138	5774	10700	14846	18230	20407
8.0	865	3056	5671	10540	14537	17688	19506
0.9	819	2987	5576	10385	14247	17253	18722
1	763	2907	5472	10219	13976	16796	18047

Dari Tabel 4.2.1 terlihat bahwa semakin kecil nilai threshold yang dipengaruhi *faktor s* maka semakin banyak pixel yang terdeteksi dan semakin tinggi nilai threshold maka pixel yang terdeteksi semakin sedikit hal ini dikarenakan semakin tinggi *faktor s* yang diinputkan maka batas yang dijangkau oleh nilai-nilai *sign-difference* semakin kecil sehingga jumlah pixel terdeteksi sebagai noise semakin sedikit. Berikut grafik hasil pendeteksian dari total pixel asli hingga pengaruh s pada nilai threshold.

University

Grafik 4.2.1 Pendeteksian jumlah noise

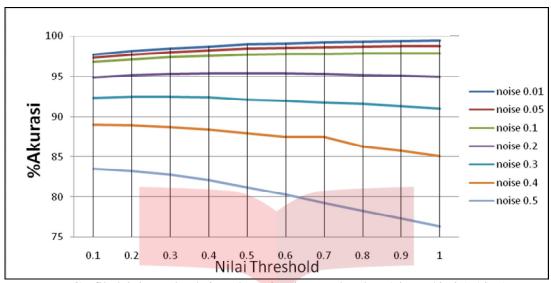
Untuk meyakinkan bahwa dalam proses pendeteksian itu benar-benar akurat dalam mendeteksi maksudnya adalah pixel yang ternoise terdeteksi benar-benar sebagai *noise* dan pixel yang *bebas noise* saat dideteksi benar-benar terdeteksi *bebas noise*. Maka dari itu lah diperlukan perhitungan tingkat akurasi dalam setiap pengaruh nilai threshold hal ini bertujuan untuk mengetahui kualitas atau performasi dari proses pendeteksian.

Berikut rumus yang digunakan

$$\%Akurasi = \frac{TP + TN}{ukuran piksel}$$

Dimana:

TP = jumlah piksel yang benar-benar noise terdeteksi sebagai noise.

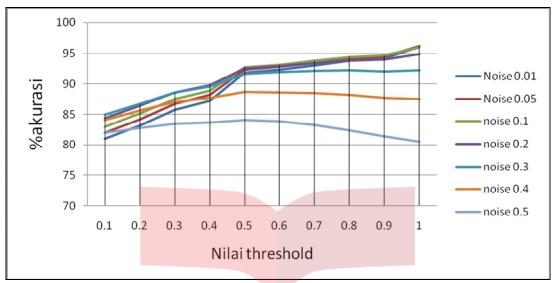

TN=jumlah piksel yang benar-benar bebas noise terdeteksi bebas noise.

Dibawah ini merupakan tabel tingkat keakuratan dalam melakukan proses pendeteksian dimana nilai threshold yang digunakan berturut-turut thr1, thr2, thr3, thr4 (40, 25, 10, 5).

Tabel 4.2.2 Pendeteksian akurasi noise gambar lena1.bmp 40, 25, 10, 5

Faktor s	noise 0.01	noise 0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.1	97.7356	97.3495	96.8185	94.9203	92.3233	88.9801	83.5526
0.2	98.1476	97.6974	97.1481	95.1721	92.4606	88.8718	83.2016
0.3	98.4894	98.0209	97.3969	95.3201	92.4728	88.6612	82.7667
0.4	98.7305	98.262	97.5937	95.4041	92.4103	88.3774	82.103
0.5	98.9655	98.4497	97.7249	95.433	92.1494	87.944	81.2119
0.6	99.0997	98.5535	97.789	95.3918	91.9861	87.468	80.2841
0.7	99.2188	98.642	97.8348	95.3033	91.7419	87.468	79.2831
0.8	99.3149	98.7213	97.8531	95.2148	91.5695	86.2885	78.2913
0.9	99.3759	98.7427	97.8546	95.0989	91.2674	85.7376	77.3346
1	99.4431	98.7701	97.876	94.9829	90.9668	85.0891	76.3504

Grafik 4.2.2 Pendeteksian akurasi noise gambar lena1.bmp 40, 25, 10, 5

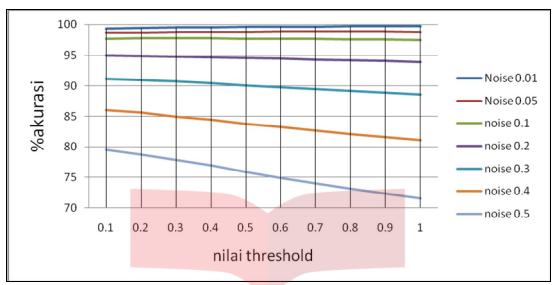

Dari Tabel 4.2.2 dan grafik 4.2.2 terlihat untuk *noise* yang rendah 0.01, 0.05, 0.1 untuk setiap peningkatan nilai dari *faktor s*, nilai akurasinya meningkat, hal ini dikarenakan noisenya masih sedikit sehingga dapat mendeteksi dengan tepat. sedangkan untuk *noise* yang tinggi yaitu 0.2, 0.3, 0.4, 0.5 dengan setiap peningkatan *faktor s* didapat tingkat akurasinya menurun, dikarenakan jumlah *noise* nya terlalu banyak sehingga akan terdapat kesalahan dalam mendeteksi sehingga tingkat akurasinya menurun.

Berikut ini merupakan tabel tingkat keakuratan dalam melakukan proses pendeteksian dimana nilai threshold yang digunakan berturut-turut thr1, thr2, thr3, thr4 (15, 10, 5, 0) pada citra lena1.bmp yang cenderung karakteristik gambarnya merata.

Tabel 4.2.3 Pendeteksian akurasi noise gambar lena1.bmp 15, 10, 5, 0

	Noise	Noise					
Faktor s	0.01	0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.1	81.0394	82.0404	82.9803	84.3857	84.9258	84.0836	81.955
0.2	83.2184	84.1675	85.1624	86.4426	86.7233	85.6415	82.7667
0.3	85.7712	86.7126	87.5381	88.5666	88.5971	86.9965	83.4686
0.4	87.2574	88.1866	88.9099	89.8071	89.592	87.6755	83.7097
0.5	91.8427	92.3767	92.7155	92.5797	91.6153	88.6719	84.0668
0.6	92.2913	92.7933	93.1107	92.9718	91.8976	88.6307	83.8562
0.7	92.9886	93.4647	93.7714	93.4296	92.1066	88.5071	83.2474
0.8	93.7653	94.1116	94.4183	93.8614	92.2043	88.208	82.3761
0.9	94.1879	94.4885	94.6808	93.9987	92.0807	87.7548	81.3965
1	96.1029	96.1594	95.9915	94.8486	92.2699	87.5031	80.5557

Grafik 4.2.3 Pendeteksian akurasi noise gambar lena1.bmp 15, 10, 5, 0


Dari Tabel 4.2.3 dan grafik 4.2.3 dapat dilihat dengan nilai threshold (15, 10, 5, 0) pada noise 0.01, 0.05, 0.1, 0.2 dalam setiap peningkatan nilai *faktor s* tingkat akurasinya meningkat. Hal ini dikarenakan noisenya masih sedikit sehingga dapat mendeteksi dengan tepat. Sedangkan untuk noise yang tinggi yaitu 0.3, 0.4, 0.5 setiap peningkatan nilai *faktor s* terjadi penurunan nilai tingkat akurasi, hal ini dikarenakan jumlah noise nya terlalu banyak sehingga ada kemungkinan terjadi kesalahan dalam mendeteksi sehingga tingkat akurasinya menurun.

Berikut ini merupakan tabel tingkat keakuratan dalam melakukan proses pendeteksian dimana nilai threshold yang digunakan berturut-turut thr1, thr2, thr3, thr4 (80, 50, 20, 10) pada citra lena1.bmp.

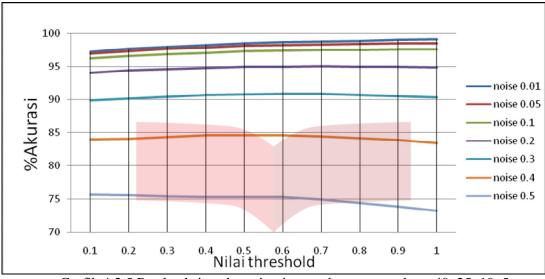
Tabel 4.2.4 Pendeteksian akurasi noise gambar lena1.bmp 80, 50, 20, 10

	10014.2.410	Hacteksian a	akurasi noise	gainbai k	mar.omp o	0, 50, 20, 1	· U
	Noise	Noise					
Faktor s	0.01	0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.1	99.292	98.613	97.673	94.9539	91.2033	86.0718	79.5609
0.2	99.3973	98.6771	97.7219	94.8944	90.9698	85.6018	78.7186
0.3	99.4766	98.7244	97.7234	94.8242	90.741	85.0021	77.8885
0.4	99.5377	98.7534	97.7036	94.7372	90.4297	84.4208	76.944
0.5	99.5804	98.7793	97.6654	94.5602	90.1199	83.7753	75.8698
0.6	99.6216	98.7991	97.6593	94.4809	89.8209	83.2565	74.9222
0.7	99.6521	98.8159	97.6166	94.3497	89.5157	82.6843	74.0616
0.8	99.6689	98.8113	97.5586	94.2093	89.1846	82.1228	73.1552
0.9	99.6826	98.79	97.5113	94.0842	88.8809	81.5979	72.3755
1	99.6979	98.7656	97.4548	93.9011	88.5742	81.0974	71.5927

Grafik 4.2.4 Pendeteksian akurasi noise gambar lena1.bmp 80, 50, 20, 10

Dapat dilihat pada Tabel 4.2.4 dan grafik 4.2.4 pada saat nilai threshold 80, 50, 20, 10 untuk noise yang rendah 0.01, 0.05, 0.1 untuk setiap peningkatan nilai factor s nilai akurasinya meningkat, hal ini dikarenakan *noisenya* masih sedikit sehingga dapat mendeteksi dengan tepat. Sedangkan untuk noise yang tinggi yaitu 0.2, 0.3, 0.4, 0.5 terjadi penurunan tingkat akurasi hal ini dikarenakan jumlah noise nya terlalu banyak sehingga ada kemungkinan salah dalam mendeteksi sehingga tingkat akurasinya menurun.

Dari hasil percobaan tingkat keakuratan dalam mendeteksi untuk jenis gambar yang cenderung merata dapat dilihat ketiga tabel dengan nilai threshold yang berbeda-beda dari setiap tabelnya dimana Tabel 4.2.2 dengan nilai threshold 40, 25, 10, 5, Tabel 4.2.3 dengan nilai threshold 15, 10, 5, 0, dan Tabel 4.2.4 dengan nilai threshold 80, 50, 20, 10 dapat diambil kesimpulan untuk *noise* yang kecil semakin besar nilai threshold maka tingkat akurasinya meningkat, sedangkan untuk *noise* yang besar, semakin besar nilai thresholdnya maka nilai akurasinya menurun. dengan nilai threshold 40, 25, 10, 5 didapatkan nilai akurasi yang hampir optimal dari setiap tingkat kerusakan *noise* dan juga nilai *faktor s*=0.5 yang mempengaruhi pada simpangan median, yang berpengaruh pada nilai threshold walaupun pada nilai *faktor s* bukan nilai yang optimal untuk setiap jenis kerusakan noise.

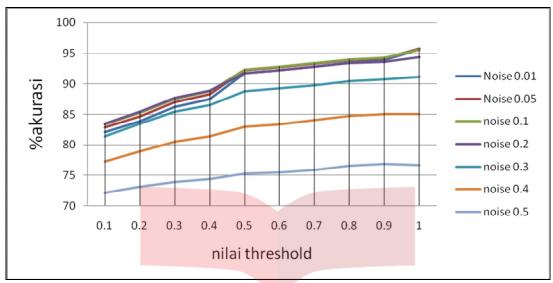

Berikut ini merupakan tabel tingkat keakuratan dalam melakukan proses pendeteksian dimana nilai threshold yang digunakan berturut-turut thr1, thr2, thr3, thr4 (40, 25, 10, 5) untuk jenis gambar yang cenderung cerah.

Tabel 4.2.5 Pendeteksian akurasi noise gambar pesawat.bmp 40, 25, 10, 5

	noise	noise					
Faktor s	0.01	0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.1	97.2244	96.9345	96.2296	94.0628	89.9063	83.9813	75.7187
0.2	97.6654	97.3724	96.6049	94.4016	90.1596	84.1217	75.6226
0.3	98.0026	97.6837	96.8628	94.6304	90.4236	84.3887	75.4349
0.4	98.2697	97.9248	97.1069	94.8196	90.7089	84.5901	75.3967
0.5	98.5260	98.1445	97.3083	94.9539	90.7928	84.6451	75.3143
0.6	98.6801	98.2651	97.4457	94.9844	90.9302	84.6359	75.3143
0.7	98.8022	98.3582	97.4976	95.0470	90.8707	84.4742	74.9893
0.8	98.9273	98.4451	97.5479	94.9982	90.712	84.1873	74.469

0.9	99.0326	98.5168	97.5784	94.9524	90.5426	83.876	73.9197
1	99.1348	98.5519	97.6028	94.8822	90.3412	83.4686	73.3047

Grafik 4.2.5 Pendeteksian akurasi noise gambar pesawat.bmp 40, 25, 10, 5

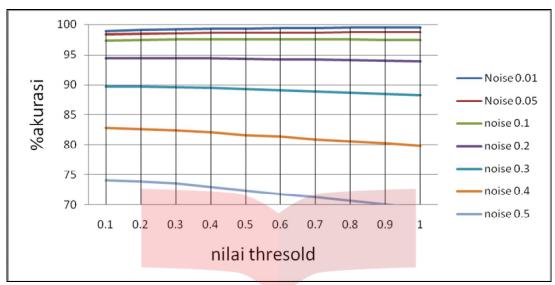

Dari Tabel 4.2.5 dan grafik 4.2.5 dapat dilihat pada noise rendah 0.01, 0.05, 0.1, dengan ke-4 nilai threshold 40, 25, 10, 5 untuk setiap peningkatan nilai *faktor s* nilai akurasinya meningkat, hal ini dikarenakan *noise* nya masih sedikit, sehingga dapat mendeteksi dengan tepat, Sedangkan untuk noise nya yang tinggi 0.2, 0.3, 0.4, 0.5 setiap peningkatan nilai *faktor s* nilai akurasinya cenderung menurun, hal ini di karenakan terlalu banyak *noisenya* sehingga ada kemungkinan kesalahan dalam mendeteksi sehingga nilai akurasinya menurun.

Berikut ini merupakan tabel tingkat keakuratan dalam melakukan proses pendeteksian dimana nilai threshold yang digunakan berturut-turut thr1, thr2, thr3, thr4 (15, 10, 5, 0) pada citra pesawat.bmp yang cenderung karakteristik gambarnya cerah.

Tabel 4.2.6 Pendeteksian akurasi noise gambar pesawat.bmp 15, 10, 5, 0

	Noise	Noise					
Faktor s	0.01	0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.1	82.0572	82.8537	83.3878	83.5068	81.4407	77.2797	72.1558
0.2	83.9081	84.6878	85.2859	85.4034	83.4518	78.981	73.1537
0.3	86.2823	87.0331	87.5443	87.706	85.4126	80.571	73.9822
0.4	87.532	88.2782	88.7665	88.9175	86.557	81.4484	74.4705
0.5	91.7786	92.2348	92.3538	91.7358	88.7482	82.9559	75.2869
0.6	92.2623	92.7292	92.8421	92.2394	89.299	83.3694	75.5295
0.7	92.865	93.3105	93.4158	92.7948	89.7919	84.0607	75.9415
0.8	93.5349	93.9178	94.0384	93.3731	90.4495	84.7778	76.6022
0.9	93.8934	94.2474	94.339	93.6172	90.7257	85.0311	76.9028
1	95.6924	95.7764	95.5673	94.4183	91.1652	85.0906	76.6571

Grafik 4.2.6 Pendeteksian akurasi noise gambar pesawat.bmp 15, 10, 5, 0


Dari Tabel 4.2.6 dan grafik 4.2.6 dapat dilihat untuk *noise* nya rendah 0.01, 0.05, 0.1, 0.2 dalam setiap peningkatan nilai *faktor s* tingkat akurasinya meningkat, hal ini disebabkan noisenya masih sedikit, sehingga dapat mendeteksi dengan tepat. Sedangkan untuk noise yang tinggi 0.3, 0.4, 0.5 setiap peningkatan nilai *faktor s* nilai akurasinya cenderung menurun, hal ini di karenakan terlalu banyak noisenya sehingga ada kemungkinan kesalahan dalam mendeteksi sehingga nilai akursinya menurun.

Berikut ini merupakan tabel tingkat keakuratan dalam melakukan proses pendeteksian dimana nilai threshold yang digunakan berturut-turut thr1, thr2, thr3, thr4 (80, 50, 20, 10) pada citra pesawat.bmp.

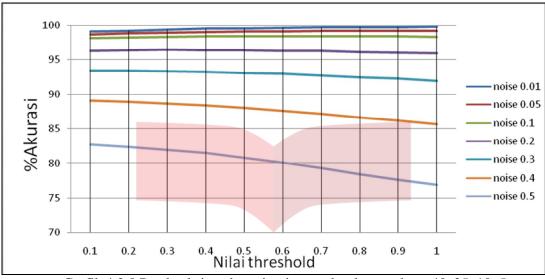
Tabel 4.2.7 Pendeteksian akurasi noise gambar pesawat.bmp 80, 50, 20, 10

				8			
	Noise	Noise					
Faktor s	0.01	0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.1	98.9105	98.3002	97.2824	94.4214	89.6576	82.7682	74.1287
0.2	99.0738	98.4268	97.3999	94.4458	89.679	82.6324	73.8434
0.3	99.1791	98.5107	97.4808	94.4443	89.6378	82.3792	73.5474
0.4	99.2783	98.5718	97.4976	94.3878	89.4989	82.0602	73.0072
0.5	99.35	98.616	97.5143	94.3069	89.2563	81.6483	72.4091
0.6	99.4064	98.6465	97.5006	94.2368	89.0717	81.3599	71.8384
0.7	99.4507	98.6542	97.5067	94.1742	88.9023	80.9311	71.2692
0.8	99.4873	98.6832	97.4808	94.075	88.71	80.6229	70.6558
0.9	99.5132	98.6954	97.4609	93.9713	88.5101	80.2933	70.0897
1	99.5438	98.6938	97,4106	93.8599	88.2721	79.9042	69.4839

Grafik 4.2.7 Pendeteksian akurasi noise gambar pesawat.bmp 80, 50, 20, 10

Pada Tabel 4.2.7 dan grafik 4.2.7 dapat dilihat untuk noise nya rendah 0.01, 0.05, 0.1 dalam setiap peningkatan nilai *faktor s* tingkat akurasinya meningkat, hal ini disebabkan noisenya sedikit, sehingga dapat mendeteksi dengan tepat. Sedangkan untuk noise yang tinggi 0.2, 0.3, 0.4, 0.5 setiap peningkatan nilai *faktor s* nilai akurasinya cenderung menurun, hal ini di karenakan terlalu banyak *noisenya* sehingga ada kemungkinan kesalahan dalam mendeteksi sehingga nilai akursinya menurun.

Dari hasil percobaan tingkat keakuratan dalam mendeteksi untuk jenis gambar yang cenderung terang dapat dilihat ketiga tabel dengan nilai threshold yang berbeda-beda dari setiap tabelnya dimana Tabel 4.2.5 dengan nilai threshold 40, 25, 10, 5, Tabel 4.2.6 dengan nilai threshold 15, 10, 5, 0, dan Tabel 4.2.7 dengan nilai threshold 80, 50, 20, 10 dapat diambil kesimpulan untuk noise yang kecil semakin besar nilai threshold maka tingkat akurasinya meningkat, sedangkan untuk noise yang besar, semakin besar nilai thresholdnya maka nilai akurasinya menurun. dengan nilai threshold 40, 25, 10, 5 didapatkan nilai akurasi yang hampir optimal dari setiap tingkat kerusakan noise dan juga nilai faktor s=0.5 yang mempengaruhi pada simpangan median, yang berpengaruh pada nilai threshold walaupun pada nilai faktor s bukan nilai yang optimal untuk setiap jenis kerusakan noise.

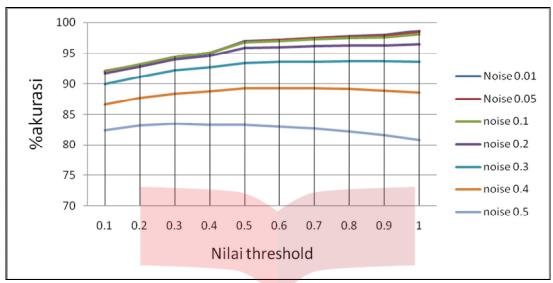

Berikut ini merupakan tabel tingkat keakuratan dalam melakukan proses pendeteksian dimana nilai threshold yang digunakan berturut-turut thr1, thr2, thr3, thr4 (40, 25, 10, 5) pada citra burung yang cenderung gambarnya gelap.

Tabel 4.2.8 Pendeteksian akurasi noise gambar burung.bmp 40, 25, 10, 5

	noise	noise					
Faktor s	0.01	0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.1	99.0524	98.6679	98.1354	96.3028	93.3884	89.0625	82.6675
0.2	99.2096	98.8068	98.2452	96.3806	93.4204	88.8748	82.3547
0.3	99.3729	98.9517	98.3429	96.4340	93.3273	88.6597	81.9641
0.4	99.4797	99.0311	98.3902	96.4127	93.2144	88.3911	81.4651
0.5	99.5422	99.0707	98.3887	96.3745	93.0542	87.999	80.7724
0.6	99.6170	99.1180	98.4100	96.3196	92.9596	87.5992	80.0629
0.7	99.6613	99.1501	98.3994	96.2585	92.7628	87.1094	79.3152
0.8	99.6979	99.1562	98.3917	96.1548	92.4957	86.6287	78.418

0.9	99.7314	99.1745	98.3719	96.0495	92.2699	86.1618	77.6733
1	99.7574	99.1684	98.3337	95.9213	91.983	85.6567	76.9501

Grafik 4.2.8 Pendeteksian akurasi noise gambar burung.bmp 40, 25, 10, 5

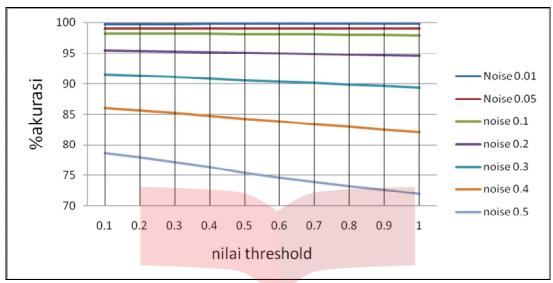

Dari Tabel 4.2.8 dan grafik 4.2.8 dapat dilihat pada noise rendah 0.01, 0.05, 0.1, dengan ke-4 nilai threshold 40, 25, 10, 5 untuk setiap peningkatan nilai *faktor s* nilai akurasinya meningkat, hal ini dikarenakan noise nya masih sedikit, sehingga dapat mendeteksi dengan tepat, Sedangkan untuk noise nya yang tinggi 0.2, 0.3, 0.4, 0.5 setiap peningkatan nilai *faktor s* nilai akurasinya cenderung menurun, hal ini di karenakan terlalu banyak noisenya sehingga ada kemungkinan kesalahan dalam mendeteksi sehingga nilai akurasinya menurun.

Berikut ini merupakan tabel tingkat keakuratan dalam melakukan proses pendeteksian dimana nilai threshold yang digunakan berturut-turut thr1, thr2, thr3, thr4 (15, 10, 5, 0) pada citra burung.bmp yang gambarnya cenderung gelap.

Tabel 4.2.9 Pendeteksian akurasi noise gambar burung.bmp 15, 10, 5, 0

	Noise	Noise					
Faktor s	0.01	0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.1	91.9205	92.099	92.0166	91.7099	89.9475	86.5829	82.4371
0.2	93.0252	93.1641	93.1915	92.865	91.2018	87.6755	83.165
0.3	94.3176	94.4351	94.4016	93.9865	92.2104	88.3957	83.4442
0.4	95.0165	95.0897	95.05	94.5602	92.7017	88.8123	83.3145
0.5	96.9635	96.8979	96.7789	95.8344	93.4631	89.2914	83.2504
0.6	97.1649	97.113	97.0032	96.022	93.5944	89.3051	83.0231
0.7	97.4915	97.4213	97.2443	96.1761	93.66	89.325	82.692
0.8	97.7798	97.6822	97.4503	96.2723	93.6951	89.1907	82.2449
0.9	97.9523	97.8348	97.5388	96.2952	93.6691	88.9145	81.6437
1	98.6771	98.4299	98.0301	96.5134	93.6478	88.5483	80.8243

Grafik 4.2.9 Pendeteksian akurasi noise gambar burung.bmp 15, 10, 5, 0


Dari Tabel 4.2.9 dan grafik 4.2.9 dapat dilihat untuk noise nya rendah 0.01, 0.05, 0.1, 0.2 dalam setiap peningkatan nilai *faktor s* tingkat akurasinya meningkat, hal ini disebabkan noisenya sedikit, sehingga dapat mendeteksi dengan tepat. Sedangkan untuk noise yang tinggi 0.3, 0.4, 0.5 setiap peningkatan nilai *faktor s* nilai akurasinya cenderung menurun, hal ini di karenakan terlalu banyak noisenya sehingga ada kemungkinan kesalahan dalam mendeteksi sehingga nilai akursinya menurun.

Berikut ini merupakan tabel tingkat keakuratan dalam melakukan proses pendeteksian dimana nilai threshold yang digunakan berturut-turut thr1, thr2, thr3, thr4 (80, 50, 20, 10) pada citra burung.bmp.

Tabel 4.2.10 Pendeteksian akurasi noise gambar burung.bmp80, 50, 20, 10

	Noise	Noise					
Faktor s	0.01	0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.1	99.6933	99.0173	98.1552	95.5261	91.5405	86.0062	78.656
0.2	99.7299	99.0387	98.1628	95.4346	91.3239	85.6415	77.9251
0.3	99.7589	99.0494	98.1354	95.3125	91.1118	85.2478	77.1423
0.4	99.7757	99.0585	98.1094	95.2194	90.8936	84.7839	76.3702
0.5	99.7925	99.0494	98.0743	95.0912	90.6052	84.2346	75.4272
0.6	99.7955	99.0494	98.0545	95.0104	90.4099	83.8776	74.6536
0.7	99.8062	99.0372	98.0087	94.9326	90.1337	83.3862	73.9014
0.8	99.8093	99.028	97.9645	94.8196	89.9094	82.959	73.259
0.9	99.8093	99.0112	97.9294	94.725	89.7003	82.5424	72.6593
1	99.8108	98.9883	97.8699	94.574	89.4226	82.1289	71.991

Grafik 4.2.10 Pendeteksian akurasi noise gambar burung.bmp 80, 50, 20, 10

Pada Tabel 4.2.10 dan grafik 4.2.10 dapat dilihat untuk noise nya rendah 0.01, 0.05, 0.1 dalam setiap peningkatan nilai *faktor s* tingkat akurasinya meningkat, hal ini disebabkan noisenya sedikit, sehingga dapat mendeteksi dengan tepat. Sedangkan untuk noise yang tinggi 0.2, 0.3, 0.4, 0.5 setiap peningkatan nilai *faktor s* nilai akurasinya cenderung menurun, hal ini di karenakan terlalu banyak noisenya sehingga ada kemungkinan kesalahan dalam mendeteksi sehingga nilai akursinya menurun.

Dari hasil percobaan tingkat keakuratan dalam mendeteksi untuk jenis gambar yang cenderung gelap dapat dilihat ketiga tabel dengan nilai threshold yang berbeda-beda dari setiap tabelnya dimana Tabel 4.2.8 dengan nilai threshold 40, 25, 10, 5, Tabel 4.2.9 dengan nilai threshold 15, 10, 5, 0, dan Tabel 4.2.10 dengan nilai threshold 80, 50, 20, 10 dapat diambil kesimpulan untuk noise yang kecil semakin besar nilai threshold maka tingkat akurasinya meningkat, sedangkan untuk noise yang besar, semakin besar nilai thresholdnya maka nilai akurasinya menurun. dengan nilai threshold 40, 25, 10, 5 didapatkan nilai akurasi yang hampir optimal dari setiap tingkat kerusakan noise dan juga nilai faktor s=0.5 yang mempengaruhi pada simpangan, yang berpengaruh pada nilai threshold walaupun pada nilai faktor s bukan nilai yang optimal untuk setiap jenis kerusakan noise.

Kesimpulan yang dapat diambil dari setiap percobaan yang dilakukan adalah

- 1. Nilai threshold dapat digunakan untuk semua jenis karakteristik gambar, dimana untuk membedakan antara pixel yang noise dengan yang bebas noise.
- 2. Untuk noise yang kecil, semakin besar nilai threshold nya maka nilai akurasinya semakin meningkat, sedangkan untuk noise yang besar, semakin besar nilai threshold nya maka nilai akurasinya menurun.
- 3. nilai threshold yang diperoleh untuk mewakili dari setiap jenis gambar dan dari tingkat kerusakan (noise) untuk mendapatkan nilai akurasi yang optimal adalah dengan nilai threshold berturut-turut 40, 25,10,5 dan juga $faktor\ s$ dalam besarnya simpangan yang berpengaruh terhadap hasil penjumlahan dengan nilai threshold dan meskipun bukan nilai yang optimal, untuk mewakili dari berbagai macam tingkat kerusakan gambar maka nilai $faktor\ s=0.5$. untuk nilai threshold yang kecil, untuk mencapai nilai akurasi yang optimal diperlukan nilai $faktor\ s$ yang lebih besar.

4.3. Menganalisa Pengaruh betha terhadap PSNR

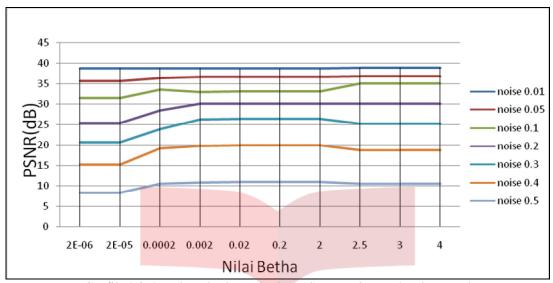
Pada percobaan kedua ini akan melakukan pengujian terhadap nilai *faktor betha* dalam proses pemilihan hasil filtering. Dalam melakukan pengujian ini melibatkan metode DPVM(5) yang di rumuskan sebagai berikut:

$$\begin{split} f(Y) &= \sum_{(i,j) \in \mathcal{N}^{(r)}} \left\{ \left| Y_{ij} - X_{ij}^{(r)} \right| \right. \\ &+ \left. \beta \left(\sum_{(m,n) \in \mathcal{V}_{ij} \cap \mathcal{N}^{(r)}} \varphi \left(Y_{ij} - Y_{mn} \right) + \sum_{(m,n) \in \mathcal{V}_{ij} \setminus \mathcal{N}^{(r)}} \varphi \left(X_{mn}^{(r)} - Y_{ij} \right) \right) \right\} \end{split}$$

Dari persamaan DPVM terlihat dua bagian formula rumusan antara $\left|Y_{ij} - X_{ij}^{(r)}\right|$ anggap saja

suku 1 (pertama) dan
$$\frac{\beta}{2} \left(\left(\sum_{(m,n) \in \mathcal{V}_{ij} \cap \mathcal{N}^{(r)}} \varphi \left(Y_{ij} - Y_{mn} \right) + \sum_{(m,n) \in \mathcal{V}_{ij} \setminus \mathcal{N}^{(r)}} \varphi \left(X_{mn}^{(r)} - Y_{ij} \right) \right) \right)$$

suku 2 (kedua), kedua bagian formula tersebut mempunyai fungsi nilai yang berbeda, dimana nilai dari *suku 1* menunjukan selisih perbedaan nilai pixel antara nilai pixel sebelum diganti dengan nilai pixel yang sudah diganti pada saat dilakukan filter, sedangkan *nilai suku 2* menunjukan *fungsi potensial edge-preserving* dimana fungsi ini melibatkan perhitungan terhadap tetangga dari pixel yang diproses. Dalam percobaan ini *faktor betha* diberi nilai 0.000002, 0.00002, 0.0002, 0.002, 0.02, 0.2, 2, 2.3, 3, dan 4 yang diharapkan dengan memberikan nilai 2 pada setiap perubahan betha akan memberikan nilai konstanta 1 sehingga yang membedakan dari setiap nilainya hanyalah jenis satuan bilangannya seperti satuan, puluhan , puluhan ribu, ratusan ribu, jutaan ribu, dan lain sebagainya. Citra yang akan di ujikan ada 3 jenis gambar yang berbeda menurut jenis *karakteristik gambar*.

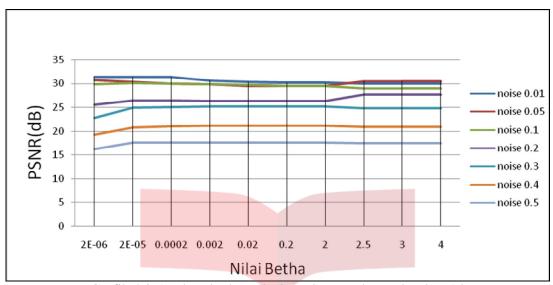

Dalam percobaan ini akan melihat pengaruh *nilai betha*, yang dimana *nilai betha* ini merupakan suatu parameter yang berpengaruh terhadap *suku 2* yaitu hasil penjumlahan dari *fungsi potensial edge-preserving*.

Berikut ini merupakan tabel hasil pecobaan yang dilakukan untuk melihat pengaruh *nilai betha* berdasarkan pada parameter uji PSNR dengan citra uji yang digunakan adalah burung.bmp yang cenderung gelap.

Tabel 4.3.4.Faktor betha terhadap PSNR pada gambar burung.bmp

Factor							
betha	noise 0.01	noise 0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.000002	38.79	35.593	31.5641	25.2575	20.663	15.1723	8.2444
0.00002	38.79	35.593	31.5641	25.2575	20.663	15.1723	8.2444
0.0002	38.79	36.2718	33.6214	28.4656	23.8262	19.0387	10.4646
0.002	38.804	36.6943	33.0593	30.0496	26.2728	19.6084	10.6988
0.02	38.7184	36.6379	33.1075	30.0507	26.3784	19.7735	10.7968
0.2	38.7056	36.6328	33.1169	30.0662	26.3829	19.824	10.8279
2	38.7041	36.6269	33.1112	30.064	26.3818	19.8249	10.8279
2.5	38.9165	36.7716	35.0564	29.999	25.2198	18.7182	10.3767
3	38.9165	36.7716	35.0564	29.999	25.2198	18.7182	10.3767
4	38.9165	36.7716	35.0564	29.999	25.2198	18.7182	10.3767

Grafik 4.3.4. Faktor betha terhadap PSNR pada gambar burung.bmp

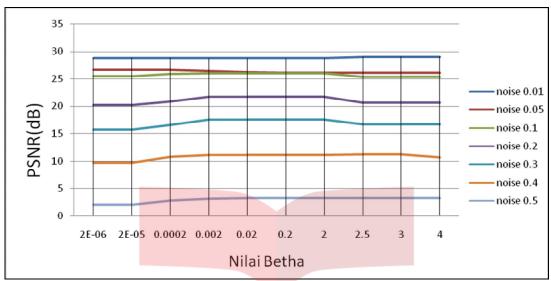

Dapat dilihat dari Tabel 4.3.4 dan grafik 4.3.4 pada noise yang rendah 0.01 pengaruh nilai betha dari setiap peningkatannya tidak berpengaruh karena noisnya masih sedikit sehinga pengaruh nilai suku 2 terhadap penjumlahan dengan suku 1 tidak besar. Namun untuk noisenya 0.05, 0,1, 0.2, 0.3, 0.4, 0.5 yang mungkin noisenya sudah banyak sehingga telihat ada peningkatan nilai PSNR pada nilai bethanya 0.002, hal ini dikarenakan dalam proses penjumlahan antara 2 buah formula rumus tersebut, nilai pada suku 2 memberikan pengaruh besar terhadap suku 1, karena dalam perhitungan nya tidak hanya menghitung perubahan pixel yang digantikan saja, namun memperhitungkan dengan nilai tetangga pixel yang digantikan. Namun ketika nilai bethanya 2.5, 3, 4 nilai PSNR turun, hal ini bisa saja terjadi dikarenakan saat nilai penjumlahan pada suku 2 sangat besar ada yang kemungkinan nilai suku 1 tidak berpengaruh sehingga nilai PSNR nya turun. Namun dari segi mempertahankan sisi dari gambar terlihat baik.

Berikutnya tabel hasil percobaan yang dilakukan terhadap citra lena1.bmp yang merupakan gambar yang cenderung merata.

Tabel 4.3.5.Faktor betha terhadap PSNR pada gambar lena1.bmp

Factor	noise	noise	1			1	
betha	0.01	0.05	noise 0.1	noise 0.2	noise 0.3	noise 0.4	noise 0.5
0.000002	31.3995	30.7977	29.9208	25.5817	22.8543	19.2587	16.1813
0.00002	31.3995	30.4194	30.1105	26.4764	24.8799	20.8014	17.5606
0.0002	31.3995	29.996	29.9977	26.4495	25.0503	21.0106	17.577
0.002	30.6764	29.8606	29.8703	26.3834	25.154	21.0832	17.5805
0.02	30.3363	29.5407	29.7323	26.3272	25.1583	21.1052	17.5804
0.2	30.238	29.5208	29.515	26.3209	25.1592	21.1145	17.5802
2	30.2296	29.5201	29.5128	26.3203	25.1602	21.115	17.5802
2.5	30.0103	30.5103	28.9801	27.7336	24.7648	20.8502	17.4484
3	30.0103	30.5103	28.9801	27.7336	24.7648	20.8502	17.4484
4	30.0103	30.5103	28.9801	27.7336	24.7648	20.8502	17.4484

Grafik 4.3.5.Faktor betha terhadap PSNR pada gambar lena1.bmp


Dapat dilihat dari Tabel 4.3.5 dan grafik 4.3.5 pada noise 0.01 dan 0.05 saat nilai dari suku 2 diperkecil dibuat tidak berpengaruh nilai PSNR nya tinggi, namun pada saat nilai pada suku 2 diperbesar yaitu pada saat nilai betha 0.002 nilai PSNR nya menurun, hal ini dikarenakan selain memperhitungkan dari segi pergantian pixel yang tepat, namun dilihat dari segi sisi atau tepi dari gambar, yaitu menghitung nilai pixel hasil proses filter dengan nilai pixel tetangganya. Sedangkan untuk noise 0.1, 0.2, 0.3, 0.4, 0.5 pada saat nilai pada suku 2 diperkecil yaitu dengan nilai betha 0.000002 nilai PSNR nya kecil, namun saat nilai dari suku 2 diperbesar atau dibuat seimbang dengan suku 1 yaitu pada saat nilai betha 0.002 nilai PSNR nya meningkat.

Berikutnya tabel hasil percobaan yang dilakukan terhadap citra pesawat.bmp yang cenderung gambarnya terang.

Tabel 4.3.6.Faktor betha terhadap PSNR pada gambar Pesawat.bmp

Factor	noise	noise		noise	noise	noise	noise
betha	0.01	0.05	noise 0.1	0.2	0.3	0.4	0.5
0.000002	28.7589	26.636	25.4813	20.196	15.745	9.6694	2.0303
0.00002	28.7589	26.636	25.4813	20.196	15.745	9.6694	2.0303
0.0002	28.7589	26.636	25.9383	20.8523	16.5616	10.7734	2.7428
0.002	28.7173	26.4342	25.9543	21.7133	17.4999	11.0067	3.1002
0.02	28.7159	26.1701	25.952	21.7349	17.5375	11.0501	3.148
0.2	28.708	26.1507	25.9883	21.7431	17.5375	11.0511	3.1745
2	28.709	26.1507	25.9892	21.7487	17.5378	11.0536	3.1745
2.5	28.9917	26.0997	25.3873	20.6481	16.6639	11.1637	3.1326
3	28.9917	26.0997	25.3873	20.6481	16.6639	11.1637	3.1326
4	28.9917	26.0997	25.3873	20.6481	16.6639	10.673	3.1326

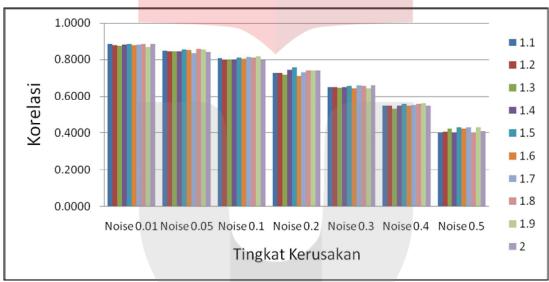
Grafik 4.3.6.Faktor betha terhadap PSNR pada gambar pesawat.bmp

Dari Tabel 4.3.6. dapat dilihat untuk noise 0.01 pengaruh dari nilai *suku* 2 tidak berpengaruh, terlihat dari setiap peningkatan *nilai betha* nilai *PSNR* nya cenderung tetap. Untuk noise 0.1, 0.2, 0.3, 0.4, 0.5 pada saat nilai pada *suku* 2 diperkecil yaitu saat *nilai betha* 0.000002 nilai *PSNR* nya rendah, namun pada saat *nilai betha* diperbesar atau dibuat pada nilai *suku* 2 yaitu pada saat nilai betha 0.002 nilai *PSNR* nya meningkat.

Kesimpulan yang dapat diambil dari hasil percobaan tentang pengaruh nilai betha terhadap nilai PSNR adalah

- 1. Nilai betha tidak harus bernilai tetap, namun dengan dibuat seimbangnya nilai pada *suku 2* terhadap nilai pada *suku 1* maka dapat meningkatkan nilai *PSNR*.
- 2. Nilai faktor betha dapat digunakan untuk berbagai jenis karakteristik gambar.
- 3. Nilai faktor betha ini berpengaruh pada method DPVM, dimana faktor betha difungsikan untuk menyeimbangkan antara nilai suku 1 dan nilai suku 2 pada metode DPVM. Dapat dilihat pengaruh nilai faktor betha dari nilai PSNR. Pada Grafik 4.3.4 dimana nilai dari suku 2 diperkecil dengan nilai betha 0.000002 nilai PSNR rendah, pada saat nilai betha 0.002 nilai PSNR nya terjadi peningkatan. Dimana pada nilai betha tersebut jumlah nilai dari suku 2 seimbang dengan jumlah nilai di suku 1 sehingga saling berpengaruh dalam proses pemilihan hasil filtering. Nilai betha tidak harus bernilai tetap, namun dengan dibuat seimbangnya nilai pada suku 1 dengan nilai suku 2 akan terjadi peningkatan nilai PSNR.

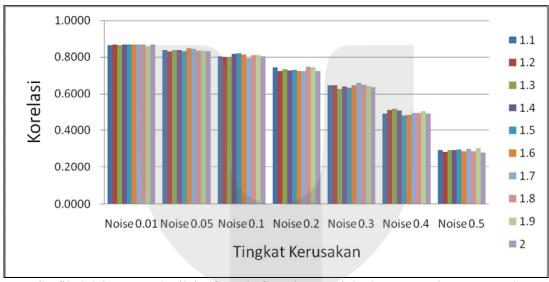
4.4. Menganalisa pengaruh alfa pada fungsi potensial edge-preserving


Pada percobaan ketiga akan melihat pengaruh *faktor alfa* yang menjadi parameter dari *fungsi potensial edge-preserving* dengan menggunakan perameter *uji korelasi*. Dimana nilai korelasi ini digunakan untuk melihat seberapa erat hubungan antara gambar sisi dari gambar asli dengan gambar sisi dari gambar filter. dengan nilai korelasi dapat dilihat berapa besar nilai yang dapat memertahankan sisi.

Berikut ini merupakan tabel hasil percobaan yang dilakukan untuk melihat pengaruh dengan nilai korelsi yang menjadikan parameter uji nya.

Tabel 4.4.1 pengaruh nilai alfa pada fungsi potensial edge	-nreserving leng hmn

Tingkat Kerusakan					8-1		1	8	1	
Gambar	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
Noise 0.01	0.8842	0.8795	0.8765	0.8836	0.8847	0.8791	0.8817	0.8848	0.8682	0.8836
Noise 0.05	0.8491	0.8454	0.8443	0.8446	0.8569	0.8531	0.8365	0.8575	0.8558	0.8416
Noise 0.1	0.8069	0.7981	0.7985	0.8009	0.8092	0.8047	0.8136	0.8084	0.8180	0.7971
Noise 0.2	0.7287	0.7293	0.7186	0.7448	0.7570	0.7111	0.7320	0.7418	0.7409	0.7411
Noise 0.3	0.6504	0.6504	0.6456	0.6508	0.6553	0.6411	0.6596	0.6572	0.6439	0.6597
Noise 0.4	0.5465	0.5488	0.5313	0.5486	0.5570	0.5482	0.5499	0.5562	0.5620	0.5480
Noise 0.5	0.4045	0.4052	0.4217	0.4041	0.4306	0.4235	0.4304	0.4045	0.4311	0.4102


Grafik 4.4.1 pengaruh nilai alfa pada fungsi potensial edge-preserving lena.bmp

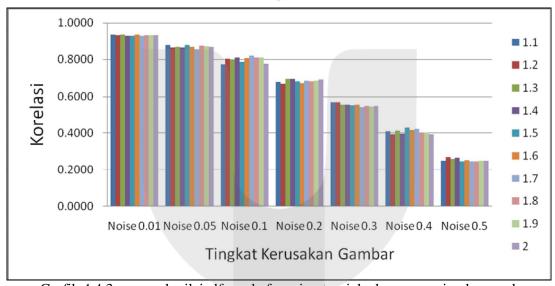
Terlihat dari Tabel 4.4.1 dan Grafik 4.4.1 setiap tingkat kerusakan gambar nilai korelasi nya berbeda-beda. Pada noise 0.01 nilai korelasi yang dianggap tinggi yaitu 0.88 pada saat nilai alfanya 1.1, 1.4, 1.5, 1.7, 1.8, 2. Untuk noise 0.05 nilai korelasi yang dianggap tinggi yaitu 0.85 pada saat nilai alfa 1.5, 1.6, 1.8, 1.9. untuk noise 0.1 nilai korelasi yang dianggap tinggi yaitu 0.81 pada saat nilai alfa 1.7, 1.9. untuk noise 0.2 nilai korelasi yang dianggap tinggi yaitu 0.75 pada saat nilai alfa 1.5. untuk noise 0.3 nilai korelasi yang dianggap tinggi yaitu 0.65 pada saat nilai alfa 1.1, 1.2, 1.4, 1.5, 1.7, 1.8, 2. Untuk noise 0.4 nilai korelasi yang dianggap tinggi yaitu 0.56 yaitu pada saat nilai alfa 1.9. untuk noise 0.5 nilai korelasi yang dianggap tinggi yaitu 0.43 yaitu pada saat nilai alfa 1.5, 1.7, 1.9. dari hasil pemilihan nilai korelasi yang dianggap paling tinggi pada setiap tingkat kerusakan gambarnya, dapat dilihat bahwa pada saat nilai alfa=1.5 di setiap tingkat kerusakan gambarnya memiliki nilai korelasi yang paling tinggi meskipun bukan nilai yang tepat, karena pada noise 0.1 nilai korelasi bukan yang dianggap tinggi, namun untuk noise yang lainya nilai alfa=1.5 nilai korelasinya tinggi. Dengan memilih nilai korelasi yang paling tinggi, maka sisi yang dapat di pertahankan masih banyak. Yang menyebabkan berkurangnya nilai korelasi adalah tingkat kerusakan gambarnya. Makin tinggi tingkat kerusakan gambarnya maka nilai korelasinya semakin kecil, karena ada kemungkinan noise nya membentuk sebuah sisi.

TD 1 1 4 4 A	1 '1 ' 10	1		1	. 1
	nangariih nilai alta	nada filnacı	notangial	adda nracarung nacaulai	hmn
1 41/01 4.4.4	DUNYALUH IIHAI AHA	Daua Tungsi	DOLCHSIAL	edge-preserving pesawat	

		-Ben- 6-11 111			or poterio	141 045		8 Pusam		
Tingkat										
Kerusakan										
Gambar	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
Noise										
0.01	0.8666	0.8686	0.8664	0.8699	0.8702	0.8691	0.8691	0.8678	0.8584	0.8673
Noise										
0.05	0.8406	0.8298	0.8386	0.8392	0.8321	0.8479	0.8461	0.8359	0.8375	0.8332
Noise 0.1	0.8041	0.8000	0.7980	0.8148	0.8196	0.8125	0.7947	0.8097	0.8084	0.8029
Noise 0.2	0.7453	0.7256	0.7353	0.7276	0.7301	0.7250	0.7250	0.7473	0.7436	0.7250
Noise 0.3	0.6445	0.6453	0.6250	0.6393	0.6314	0.6456	0.6579	0.6493	0.6425	0.6374
Noise 0.4	0.4912	0.5116	0.5176	0.5079	0.4808	0.4857	0.4943	0.4935	0.5063	0.4920
Noise 0.5	0.2915	0.2808	0.2916	0.2905	0.2954	0.2866	0.2968	0.2862	0.3002	0.2796

Grafik 4.4.2 pengaruh nilai alfa pada fungsi potensial edge-preserving pesawat.bmp

Dari Tabel 4.4.2 atau grafik 4.4.2 dapat dilihat setiap tingkat kerusakan gambar *nilai korelasi* nya berbeda-beda. Pada noise 0.01 *nilai korelasi* yang dianggap tinggi yaitu 0.87 pada saat *nilai alfanya* 1.4, 1.5, 1.6, 1.7. Untuk noise 0.05 nilai *korelasi* yang dianggap tinggi yaitu 0.84 pada saat *nilai alfa* 1.1, 1.6, 1.7. untuk noise 0.1 nilai *korelasi* yang dianggap tinggi yaitu 0.81 pada saat nilai *alfa* 1.4, 1.5, 16. untuk noise 0.2 nilai *korelasi* yang dianggap tinggi yaitu 0.74 pada saat nilai *alfa* 1.1, 1.8, 1.9. untuk noise 0.3 nilai *korelasi* yang dianggap tinggi yaitu 0.65 pada saat nilai *alfa* 1.7. Untuk noise 0.4 nilai korelasi yang dianggap tinggi yaitu 0.51 yaitu pada saat nilai *alfa* 1.2, 1.3. untuk noise 0.5 nilai *korelasi* yang dianggap tinggi yaitu 0.30 yaitu pada saat nilai *alfa* 1.7, 1.9. dari hasil pemilihan nilai *korelasi* yang dianggap paling tinggi pada setiap tingkat kerusakan gambarnya dapat dilihat bahwa pada saat nilai *alfa*=1.7 di setiap tingkat kerusakan gambarnya memiliki nilai *korelasi* yang paling tinggi meskipun bukan nilai yang tepat, karena pada noise 0.1 dan 0.4 nilai *korelasi* bukan yang dianggap tinggi, namun untuk noise yang lainya nilai *alfa*=1.7 nilai *korelasinya* tinggi. Dengan memilih nilai *korelasi* yang paling tinggi, maka sisi yang dapat di pertahankan masih banyak. Yang menyebabkan berkurangnya nilai korelasi adalah tingkat kerusakan



gambarnya. Makin tinggi tingkat kerusakan gambarnya maka nilai korelasinya semakin kecil, karena ada kemungkinan noise nya membentuk sebuah sisi.

Berikutnya tabel hasil percobaan dengan citra yang diuji Burung.bmp.

Tabel 4.4.3 pengaruh nilai alfa pada fungsi potensial edge-preserving burung.bmp

Tingkat Kerusakan		<i>8</i> ** **		8				8	, , , , , , , , , , , , , , , , , , ,	
Gambar	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
Noise 0.01	0.9332	0.9322	0.9329	0.9290	0.9263	0.9341	0.9268	0.9325	0.9318	0.9322
Noise 0.05	0.8774	0.8651	0.8692	0.8645	0.8777	0.8682	0.8573	0.8762	0.8733	0.8683
Noise 0.1	0.7728	0.8033	0.8005	0.8104	0.7879	0.8058	0.8191	0.8086	0.8107	0.7776
Noise 0.2	0.6779	0.6696	0.6956	0.6943	0.6811	0.6716	0.6861	0.6829	0.6848	0.6918
Noise 0.3	0.5688	0.5676	0.5547	0.5527	0.5509	0.5525	0.5407	0.5464	0.5433	0.5472
Noise 0.4	0.4110	0.3949	0.4125	0.3972	0.4296	0.4154	0.4223	0.4028	0.4022	0.3933
Noise 0.5	0.2488	0.2701	0.2574	0.2658	0.2472	0.2536	0.2463	0.2449	0.2493	0.2496

Grafik 4.4.3 pengaruh nilai alfa pada fungsi potensial edge-preserving burung.bmp

Dari Tabel 4.4.3 dan grafik dapat dilihat setiap tingkat kerusakan gambar nilai *korelasi* nya berbeda-beda. Pada noise 0.01 nilai *korelasi* yang dianggap tinggi yaitu 0.93 pada saat nilai *alfanya* 1.1, 1.2, 1.3, 1.6, 1.8, 1.9, 2. Untuk noise 0.05 nilai *korelasi* yang dianggap tinggi yaitu 0.87 pada saat nilai alfa 1.1, 1.2, 1.5, 1.8, 1.9. untuk noise 0.1 nilai korelasi yang dianggap tinggi yaitu 0.81 pada saat nilai *alfa* 1.4, 1.7, 19. untuk noise 0.2 nilai korelasi yang dianggap tinggi yaitu 0.69 pada saat nilai *alfa* 1.2, 1.3, 1.4. untuk noise 0.3 nilai korelasi yang dianggap tinggi yaitu 0.56 pada saat nilai *alfa* 1.1, 1.2. Untuk noise 0.4 nilai korelasi yang dianggap tinggi yaitu 0.42 yaitu pada saat nilai *alfa* 1.5, 1.7. untuk noise 0.5 nilai korelasi yang dianggap tinggi yaitu 0.27 yaitu pada saat nilai *alfa* 1.2. dari hasil pemilihan nilai *korelasi* yang dianggap paling tinggi pada setiap tingkat kerusakan gambarnya dapat dilihat bahwa pada saat nilai *alfa*=1.2 di setiap tingkat kerusakan gambarnya memiliki nilai korelasi yang paling tinggi meskipun bukan nilai yang tepat, karena pada noise 0.1 dan 0.4 nilai korelasi bukan yang dianggap tinggi, namun untuk noise yang lainya nilai *alfa*=1.2 nilai korelasinya tinggi. Dengan memilih nilai korelasi yang paling tinggi, maka sisi yang dapat di pertahankan masih banyak. Yang menyebabkan berkurangnya

nilai *korelasi* adalah tingkat kerusakan gambarnya. Makin tinggi tingkat kerusakan gambarnya maka nilai korelasinya semakin kecil, karena ada kemungkinan noise nya membentuk sebuah sisi.

Dari hasil percobaan yang dilakukan untuk melihat pengaruh nilai alfa pada fungsi potensial edge-preserving dari hasil percobaan dapat diambil kesimpulan

- 1. *Nilai korelasi* dari setiap tingkat kerusakan gambar berbeda-beda. Semakin besar tingkat kerusakan gambarnya maka nilai korelasinya semakin kecil.
- 2. *Nilai alfa* untuk setiap karakteristik gambar berbeda-beda tergantung dari nilai korelasi yang paling tinggi untuk setiap nilai alfanya. Dengan nilai korelasi yang paling tinggi, maka sisi yang dapat dipertahankan masih banyak.
- 3. Berdasarkan hasil percobaan yang dilakukan berdasarkan karakteristik dari gambar, maka nilai alfa yang menunjukan nilai korelasi yang dianggap tinggi yaitu: untuk gambar yang cenderung gelap di rekomendasikan menggunakan nilai alfa=1.2, untuk gambar yang cenderung merata di rekomendasikan menggunakan nilai alfa=1.5, sedangkan untuk gambar yang cenderung terang di rekomendasikan menggunakan nilai alfa=1.7.

Daftar Pustaka

- [1] Muntina D, Eddy. 2006. 02. Pembentukan Citra Digital, Format BMP, Halftoning & Dithering.ppt. Slide Mata Kuliah Grafika dan Citra. Bandung. IT Telkom.
- [2] T. Chen and H. R. Wu, "Adaptive impulse detection using center-weighted median filters," IEEE Signal Processing Lett., vol. 8, pp. 1–3, Jan. 2001.
- [3] Marvin Ch.Wijaya & Agus Prijono, "Pengolahan Citra Menggunakan Matlab".

 November 2007.
- [4] Raymond H. Chan, Chen Hu, and Mila Nikolova," An Iterative Procedure for Removing Random-valued Impulse Noise". February 25, 2004.
- [5] Murni, Dr. Aniati(R.1202). Dina Chahyati, M.Kom(R.1226). 2003. Pengolahan Citra Digital: Peningkatan Mutu Citra Pada Domain Spasial.ppt. Universitas Indonesia
- [6] H. Hwang and R. A. Haddad, "Adaptive median filters: new algorithms and results," *IEEE Trans. Signal Processing*, vol.4, pp. 499–502, Apr. 1995.
- [7] Raymond H. Chan, Chen Hu, and Mila Nikolova. An Iterative Procedure for Removing Random-Valued Impulse Noise.
- [8] C. Bouman and K. Sauer, "A generalized Gaussian image model for edge-preserving MAP estimation," IEEE Trans. Image Processing, vol. 2, pp. 296–310, July 1993.
- [9] Pankaj Kumar Sa," On Development of Impulse Noise Removal Schemes,", mey 2006.
- [10] Ravi Karan Sharma, "Study Of Gaussian & Impulsive Noise Suppression Schemes In Images", may 2009.