jenis keanggotaan anda tidak diperbolehkan men-download dokumen ini

Informasi Umum

Kode

25.05.351

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Thesis (S2) - Reference

Subjek

Recommender Systems

Dilihat

13 kali

Informasi Lainnya

Abstraksi

Personalized news recommender systems play a vital role in addressing information overload by delivering relevant and up-to-date news content to users. However, most previous studies focus on only one aspect: approaches that rely solely on semantic relevance often fail to account for content freshness, while methods based solely on recency tend to recommend news articles that lack contextual relevance. To address this limitation, we propose an innovative news recommendation framework that integrates the RoBERTa-Large transformer model with both textual features (titles and abstracts) and temporal features (publication dates). Our approach introduces a modular scoring mechanism based on late fusion, which adaptively combines relevance scores, and time decay scores derived from Unix timestamps. This enables the system to flexibly balance content relevance and recency at inference time. To enhance temporal diversity in the data, we utilize the Microsoft News Dataset (MIND), a large-scale dataset collected from MSN News, which we further enriched by scraping publication dates using the web scraping tool Apify. Experimental results on MIND, averaged over 10 runs, show that the proposed RoBERTa-Large model consistently outperforms baseline models such as BERT and DeBERTaV3, achieving an AUC of 0.7813. Despite its computational demands, our method significantly enhances personalized news recommendation by e!ectively capturing both semantic relevance and temporal dynamics.

  • CII7F3 - PEMBELAJARAN MESIN UNTUK SISTEM REKOMENDASI

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama JUBILEU DA ASSUNCAO DIAS XIMENES
Jenis Perorangan
Penyunting Z. K. Abdurahman Baizal
Penerjemah

Penerbit

Nama Universitas Telkom, S2 Informatika
Kota Bandung
Tahun 2025

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi