Swin-BiLSTM with Attention for Face Swap Detection in Deepfake Videos - Dalam bentuk pengganti sidang - Artikel Jurnal

NUR FITRI LUKITANIA

Informasi Dasar

56 kali
25.04.378
000
Karya Ilmiah - Skripsi (S1) - Reference

Digital manipula on tools like deepfakes have ad vanced in sophis ca on because to the quick development of deep learning and ar ficial intelligence. Face swapping, in which one person’s face is swapped out for another, is one of the most alarming types of deepfakes. This technique produces incredibly lifelike movies that may deceive viewers. Detec ng these manipulated videos is crucial to mi ga ng their nega ve impact on privacy and security. This paper proposes an ensemble approach to detec ng face swap deepfakes by combining the Swin Transformer and Bidirec onal Long Short-Term Memory (BiLSTM) with an a en on mechanism. The Swin Transformer is employed for spa al feature extrac on, while the BiLSTM captures temporal pa erns between frames, and the a en on mechanism focuses on the most relevant mesteps. The model is evaluated on the FaceForensics++ dataset, achieving a valida on accuracy of 93.81% with a valida on loss of 0.19, outperforming the Long Short-Term Memory (LSTM), Fully Convolu onal Network (FCN

Subjek

CYBER SECURITY
 

Katalog

Swin-BiLSTM with Attention for Face Swap Detection in Deepfake Videos - Dalam bentuk pengganti sidang - Artikel Jurnal
 
14p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

NUR FITRI LUKITANIA
Perorangan
Vera Suryani
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII3E3 - KEAMANAN SIBER
  • CS3243 - KECERDASAN MESIN DAN ARTIFISIAL
  • CCH4D4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini