AUGMENTING THE CTI CAPABILITY MATURITY MODEL: EXPLORING THE IMPACT OF LLMS AND HYBRID RAG ON THREAT INTELLIGENCE - Dalam bentuk buku karya ilmiah

WAWAN SETIAWAN

Informasi Dasar

50 kali
25.05.934
005.8
Karya Ilmiah - Thesis (S2) - Reference

This research addresses the challenge of enhancing organizational cyber threat intelligence capabilities by integrating Large Language Models (LLMs) and Hybrid Retrieval-Augmented Generation (RAG) within the CTI Capability Maturity Model. Traditional CTI systems struggle to process large-scale, unstructured threat data efficiently while maintaining accuracy and explainability.

The study implements the AIM-CTI framework using OpenCTI data sources and Neo4j dual database architecture, evaluated through 28 expert-curated queries across five CTI domain categories. Results demonstrate significant performance improvements over baseline systems, with the framework achieving an 82% success rate and increasing organizational CTI maturity from 21.2% to 35.8%. Human expert evaluation confirmed the practical applicability of the proposed system.

The research validates that AI-enhanced CTI systems demonstrate superior analytical capabilities compared to traditional approaches, providing organizations with a systematic framework to advance their cybersecurity intelligence while maintaining human oversight and explainability. 

Subjek

CYBER SECURITY
 

Katalog

AUGMENTING THE CTI CAPABILITY MATURITY MODEL: EXPLORING THE IMPACT OF LLMS AND HYBRID RAG ON THREAT INTELLIGENCE - Dalam bentuk buku karya ilmiah
 
 
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

WAWAN SETIAWAN
Perorangan
Vera Suryani
 

Penerbit

Universitas Telkom, S2 Ilmu Forensik
Bandung
2025

Koleksi

Kompetensi

  • CII733 - TESIS

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini